Fluorescence Spectroscopy as a Rapid, Cost Effective Method to Monitor and Analyze Low Levels of Pharmaceuticals and Personal Care Products in Environmental Water Samples

James Killarney,
H. Patterson, G. Hall*, J. Pecknham**

Department of Chemistry, University of Maine, Orono, ME

*Chemistry Department, US Coast Guard Academy, New London, CT

**Senator George J. Mitchell Center for Environmental & Watershed Research, University of Maine, Orono, ME

7th International Conference on Pharmaceuticals and Endocrine Disrupting Chemicals in Water
September 22-23, 2009
Outline

1. Introduction
2. Spectroscopy
3. Modeling
4. Conclusions and Future Directions
Part I

Introduction
• PPCP’s in drinking water, cause for concern?

Cost Analysis

• EPA has 109 compounds on Contaminant Candidate List 3 (CCL3)

• Contract GC/MS—LC/MS cost is roughly $125 per contaminant:

 • $109 \times $125 = $13,625

• Testing over one year on a weekly basis:

 • $13,625 \times 52 = $708,500

• New, less-expensive methods are needed to compliment current techniques
Using Molecular Fluorescence to Detect

- Fluorescence (photon emission) is a naturally occurring phenomenon in many molecules.
Introduction

Fluorescence Spectroscopy

• Fluorescence spectroscopy

 • Very sensitive and signals can be detected at very low compound concentrations

 • Relatively inexpensive when compared to other analytical techniques

 • Is a well described technique used for numerous applications

 • Can analyze mixtures without prior separation
Part II

Spectroscopy Data
• Two fluorescence techniques being explored

1. Synchronous Fluorescence Spectroscopy (SFS)
 • Narrow peak width
 • Easier identification in mixtures

2. Excitation Emission Matrix (EEM) Spectroscopy
 • Three dimensional ‘spectral landscape’ plots
 • Analyzed via multivariate data tools such as parallel factor analysis (PARAFAC)
SFS Data: 17α-ethinylestradiol

- **SFS graphs:**
 - SFS Peak is narrower than ordinary emission peak
 - Each peak has maximum $\Delta \lambda$ intensity value
 - $\Delta \lambda$ is the wavelength difference between excitation and emission wavelengths
 - Intensity is related to compound concentration
EEM Data: 17α-ethinylestradiol

- EEM Graphs
- 3 dimensional representations
 - Color represents intensity (red highest, blue lowest)
 - Graph 1: 4.6×10^{-6}M, Graph 2: 4.6×10^{-7}M concentrations
• Filtered Environmental Samples with no added compound
Part III

Modeling
Parallel Factor Analysis (PARAFAC)

• Multi-way data method

• Analyzes several sets of categorical variables measured in a crossed fashion

• Fluorescence emission spectra measured at several excitation wavelengths for several samples varying by concentration of 17α-ethinylestradiol

• data is three-way: arranged in a cube instead of a matrix as in standard multivariate data sets
Multi-way Data
4 Dimensions, 3 Modes, 3 Ways

Intensity Values

Emission

Excitation

Concentration

Emission

Ex

citation

<table>
<thead>
<tr>
<th>1 2 40 50 67 32 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 41 7 80 23 4 41</td>
</tr>
</tbody>
</table>

Excitation

I

J

K

Dataset

EEM Stack

EEM
Parallel Factor Analysis

PARAFAC

Factor 1

Factor 2

Score
Concentration
Loading
Emission
Excitation

Score
Concentration
Loading
Emission
Excitation

Factor 1

Factor 2

I
J
K

X

a_1
b_1
c_1

a_2
b_2
c_2
Spiked Environmental Sample Experiment

• Experimental Set-up

 • Water sample taken from Penobscot River Orono, ME and 0.45 µm filtered.

 • Aliquots of sample spiked with 12 different concentrations of 17α-ethinylestradiol ranging from 4.6×10^{-6}M to 4.4×10^{-11}M.

 • 1:10 dilution of natural water sample with deionized water. Concentration of natural water sample held constant throughout the experiment.

 • EEM data generated for each concentration sample, entered in MATLAB and PARAFAC analysis performed using PLS_Toolbox.
Part IV

Conclusions and Future Directions
Conclusions

- Due to the large number of chemical compounds in water supplies, reliable cost-effective methods are needed for monitoring purposes.

- Fluorescence Spectroscopy is a well described technique used in numerous applications. Applications with regard to water quality analysis should be further explored.

- Our spectroscopy research demonstrates that:
 1. Compounds can be detected at the ppb-ppt range
 2. Analysis can be performed without prior separation
 3. Compound detection and quantification can be determined using statistical modeling technique
Future Work

- Further PARAFAC analysis on different model chemicals and evaluating additional variables in our model:
 - Location
 - Time
 - Multi-chemical factors

- Evaluate EEM data using N-way partial least square discriminate analysis (NPLS-DA):
 - Regression analysis
 - Pattern recognition for separation of classes with high degree of similarity

- Further exploration of SFS:
 - Excitation resolved synchronous fluorescence
 - Derivative SFS
Thanks To....

1. The Patterson research group

2. My undergraduate researchers

3. My fellow authors on this talk

Parallel Factor Analysis (PARAFAC)

\[x_{ijk} = \sum_{r=1}^{R} a_{ir} b_{jr} c_{kr} + e_{ijk} \]

\[X_{IJK} = B_{RJK}^{\text{R}} + C_{IKJ}^{\text{I}} + E_{JK}^{\text{K}} \]

\[X_{IJK} = A_{IKJ}^{\text{I}} + b_1 c_1 a_1 + b_2 c_2 a_2 + b_3 c_3 a_3 + E_{JK}^{\text{K}} \]
Synchronous Scan Fluorescence Spectroscopy

Excitation acquisition at λ_{em} 310nm

Emission acquisition at λ_{ex} 280nm

$\Delta\lambda=30\text{nm}$ $\Delta\lambda=60\text{nm}$
Synchronous Scan Fluorescence Spectroscopy

Diagram showing energy levels and transitions:
- S_n to S_2 to S_1 to S_0
- ISC (intersystem crossing)
- A (photon absorption)
- F (fluorescence (emission))
- P (phosphorescence)
- S (singlet state)
- T (triplet state)
- IC (internal conversion)

Legend:
- S_0: electronic ground state
- S_1, S_2, S_n: excited states
- T_1, T_2: triplet states

Excited vibrational states (excited rotational states not shown)
Synchronous Scan Fluorescence Spectroscopy

Synchronous Scan Fluorescence Spectroscopy

- Jobin Yvon Fluorolog-3 Spectrofluorometer